Cognitive Function in Survivors of Breast Cancer After Chemotherapy

Michelle C. Janelsins, Ph.D., M.P.H.
Associate Professor of Surgery, Neuroscience, Oncology, and Radiation Oncology
Director, Cancer Control and Psychoneuroimmunology Laboratory
University of Rochester School of Medicine and Dentistry
Wilmot Cancer Institute
Rochester, NY USA
Faculty Disclosure

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Honoraria/Expenses</th>
<th>Consulting/Advisory Board</th>
<th>Funded Research</th>
<th>Royalties/Patent</th>
<th>Stock Options</th>
<th>Ownership/Equity Position</th>
<th>Employee</th>
<th>Other (please specify)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X No, nothing to disclose

Yes, please specify:
Definitions

• Terms
 – Cancer-related cognitive impairment (CRCI)
 – Chemotherapy-related cognitive impairment
 – “Chemobrain”, “chemofog”

• Problem Areas
 – Visual and verbal memory, learning, concentration, attention, processing ability, executive function, language

Ahles et al., 2018, Annu Rev Clin Psychol
Examples of CRCI

- Trouble with details like names, events, dates
- Trouble with learning new things
- Trouble remembering common words - word is on the ‘tip of the tongue.’
- Trouble remembering things you usually have no trouble recalling like directions
- Trouble focusing on tasks and taking longer to accomplish a task
- Trouble with multi-tasking (at work, at home)

Adapted from ACS, www.cancer.org, 2018
Severity of CRCI

• Mild cognitive impairment: typically a range of -1.5 to -2 standard deviations below population normative scores on standardized cognitive assessments.

• CRCI: Generally mild to moderate in nature.

• The pre-treatment (baseline) level of cognitive function is important for determining clinically meaningful declines that are more subtle in cancer patients.

(Wefel et al., 2004, Wefel et al., CA, 2015)
Overall Impact of CRCI

- **Negative impact on quality of life and activities of daily living**
 (Reid-Ardnt et al., 2010, Psycho-Oncology; Van Oh et al., 2013, Eur J Oncol Nurs; Selamat et al., 2014, PLOS One; Klemp et al., 2018, Support Care Cancer)

- **Negative impact on performance in school/work**
 (Wefel et al., 2004, Cancer; Van Oh et al., 2018, J Cancer Surviv.)

- **Impaired social functioning**
 (Reid-Arndt et al., 2009, J Psychoc Oncol.)

- **Related to mortality risk**
 (Hshieh et al., 2018, JAMA Oncol.)
Who and When?

• Breast cancer (most studies)
• Colorectal cancer
• Prostate cancer
• Hematologic malignancy
• Testicular cancer
• Ovarian cancer
• Multiple myeloma

• Chemotherapy (most studies)
• Radiation
• Hormone therapy
• Stem cell transplant

Selected References: van Dam et al., 1998, JNCI; Brezden et al., 2000, JCO; Ahles et al., 2002, JCO; Wefel et al., 2004, Cancer; Schagen et al., 2006, JNCI; Bender et al., 2006, Psycho-oncol; Wefel et al., 2011, Cancer; Koppelmans et al., 2012, JCO; Correa et al., 2012, Gynecol Oncol; Jones et al., 2013, Cancer; Ahles et al. 2012, JCO; Ganz et al., 2014, JCO; Hurria et al., 2014, Clin Breast Cancer; Vardy et al., 2015, JCO; Bender et al., 2015; Mandelblatt et al., 2014 JCO, Lange et al., 2016 Oncologist; Merriman et al., 2017, Jansins et al., 2017, JCO; Sharafeldin N et al., 2018
Current Data on the Trajectory of CRCI Related to Chemotherapy in Patients with Solid Tumors

- Post Surgery
- During Chemotherapy
- Post Chemotherapy
- Short-term follow-up (6 mo – 1 yr)
- Long-term follow-up (1 yr+)

30-40%
40-80%
50-60%
40-56%
35%

- TMT
- COWA
- HVLT-R
- Computerized measures
- Self-report (FACT-Cog)

Selected References: van Dam et al., 1998, JNCI; Brezden et al., 2000, JCO; Ahles et al., 2002, JCO; Wefel et al., 2004, Cancer; Schagen et al., 2006, JNCI; Bender et al., 2006, Psycho-oncol; Wefel et al., 2011, Cancer; Koppelmans et al., 2012, JCO; Oncol; Ahles et al. 2012, JCO; Ganz et al., 2014, JCO; Vardy et al., 2015, JCO; Mandelblatt et al., 2014 JCO, Lange et al., 2016 Oncologist; Janelsins et al., 2017, JCO
Study Aims

• Primary and secondary aims
 • To determine the longitudinal change in cognitive function in breast cancer patients compared to controls from pre- to post-chemotherapy and from pre-chemotherapy to six months post-chemotherapy.

• Exploratory aims
 • To identify demographic, biologic, psychologic, and clinical risk factors of cognitive decline.
Longitudinal Cognitive Study in Breast Cancer and Lymphoma Patients and Age- and Gender-Matched Controls (N=1,432)

PI: Janelins

<table>
<thead>
<tr>
<th>Assessment 1</th>
<th>Assessment 2</th>
<th>Assessment 3</th>
<th>Assessment 4</th>
<th>Assessment 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Within 7 days prior to 1st chemotherapy)</td>
<td>(Within one month post-chemotherapy)</td>
<td>(At six months following Assessment 2)</td>
<td>(At 1 year following Assessment 2)</td>
<td>(At 2 years following Assessment 2)</td>
</tr>
<tr>
<td>All study subjects</td>
<td>All study subjects</td>
<td>All study subjects</td>
<td>200 patient sub-study</td>
<td>200 patient sub-study</td>
</tr>
<tr>
<td>Neuropsychological Assessment</td>
<td>Neuropsychological Assessment</td>
<td>Neuropsychological Assessment</td>
<td>Neuropsychological Assessment</td>
<td>Neuropsychological Assessment</td>
</tr>
<tr>
<td>Blood collection for cytokine and genetic analyses</td>
<td>Blood collection for cytokine and genetic analyses</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Longitudinal Cognitive Study in Female Breast Cancer Patients and Age-Matched Controls (N=945)

Assessment 1 (Within 7 days prior to 1st chemotherapy)
Breast cancer and control subjects
Neuropsychological Assessment
Self Report
Blood collection for cytokine and genetic analyses

Assessment 2 (Within one month post-chemotherapy)
Breast cancer and control subjects
Neuropsychological Assessment
Self Report
Blood collection for cytokine and genetic analyses

Assessment 3 (At six months following Assessment 2)
Breast cancer and control subjects
Neuropsychological Assessment
Self Report

NCI Community Oncology Research Program

www.mascc.org/meeting
Eligibility

Breast Cancer Patient Inclusion:
• Females with invasive non-metastatic breast cancer (stage I-IIIC)
• Be chemotherapy naïve and scheduled to begin a course of chemotherapy
• 21 years of age or older

Breast Cancer Patient Exclusion:
• No major psychiatric illness requiring hospitalization
• No neurodegenerative disease or any CNS disease
• Not to receive concurrent radiation during chemotherapy
• Must not be pregnant

Controls: same age (±5 years) and meet the same (applicable) eligibility criteria
Baseline Characteristics

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Characteristic</th>
<th>Statistic</th>
<th>All (%) (N=945)</th>
<th>Breast Cancer/Chemotherapy (N=581)</th>
<th>Non-Cancer Control (N=364)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td>Mean</td>
<td>53.1</td>
<td>53.4</td>
<td>52.6</td>
<td>p=0.167</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>0.34</td>
<td>0.44</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Range</td>
<td>[22-81]</td>
<td>[22-81]</td>
<td>[27-81]</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td>Black</td>
<td>N</td>
<td>64 (6.8%)</td>
<td>47 (8.1%)</td>
<td>17 (4.7%)</td>
<td>p=0.017</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>N</td>
<td>20 (2.1%)</td>
<td>16 (2.8%)</td>
<td>4 (1.1%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>White</td>
<td>N</td>
<td>861 (91.1%)</td>
<td>518 (89.1%)</td>
<td>343 (94.2%)</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Hispanic or Latino</td>
<td>N</td>
<td>12 (1.3%)</td>
<td>7 (1.2%)</td>
<td>5 (1.4%)</td>
<td>p=0.999</td>
</tr>
<tr>
<td></td>
<td>Not Hispanic or Latino</td>
<td>N</td>
<td>920 (97.3%)</td>
<td>566 (97.4%)</td>
<td>354 (97.3%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td>N</td>
<td>13 (1.4%)</td>
<td>8 (1.4%)</td>
<td>5 (1.3%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td><8thGrade</td>
<td>N</td>
<td>1 (0.1%)</td>
<td>1 (0.2%)</td>
<td>0 (0%)</td>
<td>P<0.001</td>
</tr>
<tr>
<td>Education</td>
<td>Some High School</td>
<td>N</td>
<td>10 (1.1%)</td>
<td>10 (1.7%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HSGED</td>
<td>N</td>
<td>174 (18.4%)</td>
<td>131 (22.5%)</td>
<td>43 (11.8%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part College</td>
<td>N</td>
<td>351 (37.2%)</td>
<td>194 (33.4%)</td>
<td>157 (43.1%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>College</td>
<td>N</td>
<td>248 (26.2%)</td>
<td>140 (24.1%)</td>
<td>108 (29.7%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graduate</td>
<td>N</td>
<td>161 (17.0%)</td>
<td>105 (18.1%)</td>
<td>56 (15.4%)</td>
<td></td>
</tr>
<tr>
<td>Marital Status</td>
<td>Widowed</td>
<td>N</td>
<td>45 (4.8%)</td>
<td>28 (4.8%)</td>
<td>17 (4.7%)</td>
<td>p=0.276</td>
</tr>
<tr>
<td></td>
<td>Divorced</td>
<td>N</td>
<td>106 (11.2%)</td>
<td>69 (11.9%)</td>
<td>37 (10.2%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Separated</td>
<td>N</td>
<td>20 (2.1%)</td>
<td>17 (2.9%)</td>
<td>3 (0.8%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>N</td>
<td>75 (7.9%)</td>
<td>45 (7.8%)</td>
<td>30 (8.2%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long term relationship</td>
<td>N</td>
<td>43 (4.5%)</td>
<td>28 (4.8%)</td>
<td>15 (4.1%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Married</td>
<td>N</td>
<td>656 (69.4%)</td>
<td>394 (67.8%)</td>
<td>262 (72.0%)</td>
<td></td>
</tr>
<tr>
<td>Menopausal Status</td>
<td>Pre-Menopausal</td>
<td>N</td>
<td>287 (30%)</td>
<td>182 (31.3%)</td>
<td>105 (28.9%)</td>
<td>p=0.136</td>
</tr>
<tr>
<td></td>
<td>Peri-Menopausal</td>
<td>N</td>
<td>88 (9.3%)</td>
<td>45 (7.7%)</td>
<td>43 (11.8%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post-Menopausal</td>
<td>N</td>
<td>481 (51%)</td>
<td>303 (52.2%)</td>
<td>178 (48.9%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medically-Induced</td>
<td>N</td>
<td>89 (9.4%)</td>
<td>51 (8.8%)</td>
<td>38 (10.4%)</td>
<td></td>
</tr>
</tbody>
</table>

Janselins et al., 2017 JCO
Baseline Characteristics

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Characteristic</th>
<th>Statistic</th>
<th>Breast Cancer/Chemotherapy (N=581)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage of Disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1</td>
<td>N</td>
<td></td>
<td>158 (27.2%)</td>
</tr>
<tr>
<td>Stage 2</td>
<td>N</td>
<td></td>
<td>285 (49.1%)</td>
</tr>
<tr>
<td>Stage 3</td>
<td>N</td>
<td></td>
<td>108 (18.6%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>N</td>
<td></td>
<td>30 (5.1%)</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>Anthracycline</td>
<td>N</td>
<td>279 (48.0%)</td>
</tr>
<tr>
<td>Non-Anthracycline</td>
<td>N</td>
<td></td>
<td>302 (52.0%)</td>
</tr>
<tr>
<td>Radiation Therapy (A2 to A3)</td>
<td>Yes</td>
<td>N</td>
<td>287 (57.5%)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>N</td>
<td>205 (41.3%)</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td>N</td>
<td>13 (2.6%)</td>
</tr>
<tr>
<td>Hormone Therapy (A2 to A3)</td>
<td>Yes</td>
<td>N</td>
<td>172 (34.0%)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>N</td>
<td>324 (64.2%)</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td>N</td>
<td>9 (1.8%)</td>
</tr>
</tbody>
</table>

*N from A2 to A3 = 505

Janelinsins et al., 2017 JCO
Cognitive Complaints in Female Breast Cancer Patients and Age-Matched Controls (N=945)

Better Cognitive Function

Worse Cognitive Function

Controlled for: age, education, race, menopausal status, and baseline reading ability, anxiety, and depression

Janelsins et al., 2017 JCO

• Anxiety
• Depression
• Cognitive Reserve
Prevalence of Clinically Meaningful CRCI

- Pre- to post-chemotherapy*

 ![Bar chart showing % Worse, % Better, and % Same for Chemo and Control groups.]

 *p<0.001

- Pre-chemotherapy to 6 months post-chemotherapy*

 ![Bar chart showing % Worse, % Better, and % Same for Chemo and Control groups.]

 Janselsins et al., 2017 JCO
Trajectory of CRCI

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adjusted β (SE)</td>
<td>Adjusted β (SE)</td>
<td>Adjusted β (SE)</td>
<td>Adjusted β (SE)</td>
</tr>
<tr>
<td>Memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANTAB Delayed Match to Sample Visual Memory (Primary)</td>
<td>higher</td>
<td>1.08 (1.21)</td>
<td>0.76 (1.44)</td>
<td>-3.81 (1.59)</td>
</tr>
<tr>
<td>CANTAB Verbal Recognition Memory</td>
<td>higher</td>
<td>0.13 (0.12)</td>
<td>-0.40 (0.13)</td>
<td>0.003</td>
</tr>
<tr>
<td>CANTAB Verbal Recognition Memory</td>
<td>higher</td>
<td>0.12 (0.15)</td>
<td>-0.14 (0.20)</td>
<td>0.505</td>
</tr>
<tr>
<td>Hopkins Verbal Learning Test-Revised Immediate Recall</td>
<td>higher</td>
<td>0.12 (0.10)</td>
<td>-0.03 (0.09)</td>
<td>0.738</td>
</tr>
<tr>
<td>Hopkins Verbal Learning Test-Revised Delayed Recall</td>
<td>higher</td>
<td>-0.02 (0.15)</td>
<td>-0.05 (0.12)</td>
<td>0.691</td>
</tr>
<tr>
<td>Attention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANTAB Rapid Visual Processing Speed</td>
<td>higher</td>
<td>-3.11 (0.53)</td>
<td>-1.12 (0.68)</td>
<td>0.098</td>
</tr>
<tr>
<td>Trail Making Test-A</td>
<td>lower</td>
<td>-0.01 (0.01)</td>
<td>0.02 (0.01)</td>
<td>0.039</td>
</tr>
<tr>
<td>Executive Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANTAB One touch stockings of Cambridge</td>
<td>lower</td>
<td>-0.01 (0.02)</td>
<td>0.02 (0.02)</td>
<td>0.310</td>
</tr>
<tr>
<td>Controlled Oral Word Association</td>
<td>higher</td>
<td>0.25 (0.23)</td>
<td>-0.80 (0.16)</td>
<td><0.005</td>
</tr>
<tr>
<td>Trail Making Test-B</td>
<td>lower</td>
<td>-0.03 (0.01)</td>
<td>0.02 (0.01)</td>
<td>0.119</td>
</tr>
</tbody>
</table>

Controlled for: age, education, race, reading (cognitive reserve), anxiety, depression

Janelsins et al., In Revision
Longitudinal Trajectory of Cancer-Related Cognitive Impairment: Visual Memory (CANTAB DMS)

0, 4, 12 second delays
Longitudinal Trajectory of Cancer-Related Cognitive Impairment: Visual Memory (CANTAB DMS; N=943)

LMM controlled for: age, education, reading (cognitive reserve), anxiety, depression

LMM p<0.005
The Big Picture

Diagnosis

Treatment

Survivorship

- Long-term problems?
- What treatments?

Host, disease, medical, psychological, biologic (protein and genetic)?
CRCI Risk Factors

- Older age
- Minority race
- Lower education level
- Lower cognitive reserve
- Postmenopausal
- Comorbidities
- Higher baseline anxiety
- Higher baseline depression

Selected References: Cimprich et al., 2005; Ahles et al., 2010; JCO; Magnuson et al., Curr Geriatr Rep; Janelinsins et al., 20017, JCO
Biologic Etiology of CRCI is Likely Multifactorial

- Methods and advances
 - Blood-based biomarker studies have helped our understanding of relationships between CRCI and potential biologic mechanisms (Reviewed in: Castel et al., 2017, Front Pharmacol.)
 - Neuroimaging studies have helped our understanding of CNS neurotoxicity (Reviewed in: Deprez et al., 2018, JCNI)
 - Animal models have helped our understanding of the peripheral and CNS impact of cancer treatments on inflammation, oxidative stress, and mitochondrial function (Reviewed in: Dietrich et al., 2015, Neuroscience)
Does Inflammation Contribute to CRCI?

Hippocampus

Neurogenesis

Brain

astrocyte

Blood

macrophage

cytokines and chemokines

T cell

neutrophil

Chemotherapy
tissue

Williams et al., 2018; Lyon et al., 2016; Cheung et al., 2015; Ganz et al., 2014; Janelins et al., 2012; Bower, JE et al., 2012; Kesler et al., 2011; Wang et al., 2010; Villani et al., 2008; Dietrich et al., 2006; Pustztai et al., 2004
Changes in Cytokines from Pre-Chemotherapy to Two Years Follow-Up in Breast Cancer Patients

- Cytokines fluctuate over time
- Different patterns

Lyon et al., J Neuroimmunol., 2016
Inflammation and CRCI

• TNF-α/TNFRI/II
 – Memory and processing speed, cognitive complaints
 – Prior to surgery and adjuvant therapy (Patel et al., 2015, JNCI)
 – During chemotherapy (Williams et al., 2018, J Neuroimmunol.)
 – Post-chemotherapy (Ganz et al., 2013, Brain Behav Immun.; Kesler, Janselsins et al., 2013, Brain Behav Immun.; Lyon et al., 2016, J Neuroimmunol.)

• IL-6
 – Processing speed (Cheung et al., 2015, Ann Oncol.)

• IL-1β
 – Processing speed (Cheung et al., 2015, Ann Oncol.)
TNFRs and Visual Memory (DMS)

- Pilot (N=22)
 - Breast Cancer
 - During Chemotherapy

Williams et al., 2018, Journal of Neuroimmunol.
Genetic Risk Factors of CRCI

- **APOE** (Ahles et al., Psycho-oncology, 2014)
 - One copy of an e4 allele associated with deficits in visual memory in patients receiving chemotherapy

- **COMT rs4680** (Small et al., Cancer, 2011)
 - Val^{158}Met, Val allele had poorer attention, motor speed, and verbal fluency compared to healthy controls

- **BDNF rs6265** (Ng et al., Neuro-oncology, 2016)
 - Val^{66}Met, Met/Met protective for both perceived function, verbal fluency and multitasking
Biomarkers: Beyond Etiology

- Baseline or early treatment level assessment of biomarkers may help determine who is most likely to develop CRCI.
- Biomarker levels may help determine what intervention modality may work best.
Conclusions: Trajectory of CRCI

• CRCI is an important clinical problem that develops prior to and over the course of treatment and persists for a subset of survivors post-treatment.

• CRCI can be assessed by multiple measurement modalities: self-report, neuropsychological assessment, computerized assessment.

• Computerized batteries may be helpful for assessing long-term trajectories (pre-chemotherapy to 6 months post-chemotherapy) of cognitive components of attention and visual working memory.

• Older age, minority race, lower education level, lower reading score, higher baseline anxiety and higher baseline depression were independently associated with cognitive decline.
Conclusions: Mechanisms

• Inflammation is associated with CRCI.
• Promising genetic variants in growth factor, neurotransmitter signaling and aging are also associated with CRCI.
• These pathways are important for our understanding of etiology and also informing risk prediction and intervention research.
Future Directions: Expanding Impact

• Well-controlled, longitudinal studies with long-term outcomes are needed.
• Understanding the relationships between deficits in attention, memory and other cognitive functions in specific disease groups receiving different treatments is needed.
• The role of clinical, demographic, and biologic risk factors need to be assessed to help identify patients at risk for cognitive decline.
 – *What are the interactions between the periphery and CNS?*
• These data will help further our knowledge of CRCI and be helpful for developing interventions, and ultimately, overall treatment decision making as treatment becomes more complex and tailored to the patient.
Acknowledgements

- Gary Morrow, Ph.D., M.S.
- Karen Mustian, Ph.D., M.P.H.
- Supriya Mohile, M.D.
- Luke Peppone, Ph.D., M.P.H.
- Charles Heckler, Ph.D., M.S.
- Charles Kamen, Ph.D.
- Tim Ahles, Ph.D.
- Debbie Cory-Slechta, Ph.D.
- Christine Ambrosone, Ph.D.
- Eva Culakova, Ph.D.
- Sarah Kerns, Ph.D.
- Song Yao, Ph.D.
- Song Liu, Ph.D.
- Oxana Palesh, Ph.D.
- Shelli Kesler, Ph.D.
- Michelle Shayne, M.D.
- Alissa Huston, M.D.
- Marcia Krebs, M.D.
- Mohamed Tejani, M.D.
- Allison Magnuson, M.D.
- Rich Dunne, M.D.
- Chunkit Fung, M.D.
- Joe Guido, M.S.
- Javier Bautista, M.S.
- Patients
- Participants and Collaborating NCORPs
- URCC NCORP Research Base Staff
- URMC CCPL Lab
 - Bryan Thompson
 - Mark Gallagher
 - Rachel Yang
 - Annalynn Williams, MS
 - Lianlian Li, M.S.
 - Kassie Doyle
 - Sara Alberti
 - Devon Hott
 - Zac Werner
 - Kate Murphy
- URMC PEAK Lab
- URMC Human Immunology Core
- Roswell Park Genomics Core
- FUNDING:
 - NIH DP2CA195765 (MCJ)
 - NCI U10 Suppl CA037420 (MCJ)
 - NCI UG 1 Suppl CA189961 (MCJ)
 - NCI K07CA168886 (MCJ)
 - NCI CCOP Research Base U10 CA037420 (GRM (MCJ - Co-I))
 - NCI NCORP Research Base UG1 CA189961 (GRM, KM (MCJ - Co-I))