Intestinal *Blautia* regulates gastrointestinal toxicity in cancer patients receiving standard dose chemotherapy

Wardill HR, Bowen JM, Secombe KR, Tissing WJE, Harmsen HJM, Stringer AM, Al-Dasooqi N, Mayo B and Gibson RJ.

Dr Hannah Wardill, PhD
NHMRC CJ Martin Biomedical Research Fellow
The University of Adelaide (Australia)
University Medical Centre Groningen (Netherlands)
Conflict of interest

Hannah Wardill, PhD

Has no real or apparent conflicts of interest to report.
The microbiome: a new risk prediction tool for gastrointestinal toxicity?
The microbiome: a new risk prediction tool?

- Microbiome is **unique and individualized**
The microbiome: a new risk prediction tool?

• Microbiome is **unique and individualized**

• Microbiome is uniquely position to **modulate cancer treatment efficacy and toxicity** due to influence on:

 • Drug metabolism
 • Mucosal immunology / barrier integrity / inflammation
 • Tolerance / immunogenic cell death
The microbiome: a new risk prediction tool?

- Microbiome is **unique and individualized**
- Microbiome is uniquely position to **modulate cancer treatment efficacy and toxicity** due to influence on:
 - Drug metabolism
 - Mucosal immunology / barrier integrity / inflammation
 - Tolerance / immunogenic cell death
- Unlike human genome, the **microbiome is highly plastic** enabling risk modification and fine tuning of treatment outcomes
Retrospective cohort investigation

• Archival fecal samples from N=12 patients undergoing standard dose 5-FU based chemotherapy for CRC and breast cancer
Retrospective cohort investigation

• Archival fecal samples from N=12 patients undergoing standard dose 5-FU based chemotherapy for CRC and breast cancer

• Patients donated N=2 stool samples: samples:
 • 1 X before chemotherapy cycle
 • 1 X day 5 (peak diarrhea)
Retrospective cohort investigation

• Archival fecal samples from N=12 patients undergoing standard dose 5-FU based chemotherapy for CRC and breast cancer

• Patients donated N=2 stool samples samples:
 • 1 X before chemotherapy cycle
 • 1 X day 5 (peak diarrhea)

• Toxicity was assessed using NCI CTCAE v5.0;
 • Toxic = G3+ diarrhea
 • Non-toxic = G0/G1 diarrhea
5-FU based chemotherapy disrupts microbial diversity and composition

Figure 1: Species diversity (Shannon’s index) pre- and post-chemotherapy in toxic and non-toxic patients.
5-FU based chemotherapy disrupts microbial diversity and composition

Figure 2: Significantly affected bacterial species in toxic and non-toxic individuals.
Toxic and non-toxic patients have distinct microbial signatures before chemotherapy.

Figure 3: Principle component analysis of pre-treatment microbiome composition.
Toxic and non-toxic patients have distinct microbial signatures before chemotherapy

Figure 4: Microbial composition (genera level) in toxic and non-toxic individuals
Toxic and non-toxic patients have distinct microbial signatures before chemotherapy.

Figure 4: Microbial composition (genera level) in toxic and non-toxic individuals.

Figure 5: Relative abundance of Blautia in toxic and non-toxic individual.
Blautia correlates with toxicity outcome

- Microbial composition aligning with PC considered protective
- Correlated species with PC2
Blautia correlates with toxicity outcome

- Microbial composition aligning with PC considered protective
- Correlated species with PC2

<table>
<thead>
<tr>
<th></th>
<th>Collinsella aerofaciens</th>
<th>Streptococ. Thermophil.</th>
<th>Blautia luti</th>
<th>Ruminococcus lactaris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation coefficient</td>
<td>-0.839***</td>
<td>-0.593**</td>
<td>0.744**</td>
<td>0.616**</td>
</tr>
</tbody>
</table>
What is driving this phenomenon?
Blautia luti in vitro activity

- Isolated *blautia luti* from fresh human faeces (healthy individual)
- Cultured anaerobically in YCFAG, isolated supernatant via centrifugation
- Investigated impact of *blautia luti* supernatant (B-SPN) on:
 - Colonic epithelial proliferation (xCELLigence system)
 - Epithelial barrier function (trans-epithelial electrical resistance)
Conclusions

• 5-FU based chemotherapy causes microbial dysbiosis reflected by a decrease in species diversity, a loss of butyrate-producing commensals and an increase in opportunistic pathogens

• Pre-treatment microbial composition critical in determining outcomes

• Blautia genera associated with favourable toxicity outcomes

• Restoration of **blautia genera may be important in protecting against gastrointestinal toxicity**, via:
 • Promotion of epithelial restitution
 • Restoration of the intestinal barrier
 • Stimulation of commensal expansion
Acknowledgments

Wim Tissing, Hermie Harmsen and Ana Rita da Silva Ferreira: University Medical Centre Groningen (Netherlands)

Kate Secombe, Joanne Bowen, Rachel Gibson, Ysabella Van Sebille, Bronwen Mayo, Noor Al-Dasooqi, Dorothy Keefe and Imogen Ball: The University of Adelaide and University of South Australia (Australia)

FUNDING
National Health and Medical Research Committee
The University of Adelaide
The Royal Adelaide Hospital

@hannahrwardill
@ToxicitiesGroup