Biosimilars in Oncology

Hope S. Rugo, MD
Professor of Medicine
Director, Breast Oncology and Clinical Trials Education
University of California San Francisco Comprehensive Cancer Center
Conflict of Interest Disclosure
Hope S. Rugo, MD

• Institutional research funding from:
 – Pfizer, Novartis, Eli Lilly, Roche/Genentech, MacroGenics, Odonate, Merck, OBI, Eisai, Immunomedics, Daichi

• Travel support from:
 – Lilly, Pfizer, Mylan, Puma, Amgen, Astra Zeneca
Biologics in Oncology

- Biologics represent approximately 50% of the pharmaceutical market in oncology
- Biologics play a critical role in clinical care:
 - Supportive care
 - Myeloid growth factors
 - Erythropoietin-stimulating agents
 - Active therapy
 - Monoclonal antibodies
 - Antibody-drug conjugates
 - Cytokines

Identical Copies of Biologics Cannot Be Made

Reference Biologics

Variations Over Time
Manufacturing/Process Changes
FDA: Demonstration of Comparability

Reference Biologics
Highly Similar
No Adverse Impact Upon Safety or Efficacy of the Drug Product

Biosimilars

NOT Identical

Reference Biologics

Generics

Identical

Small Molecule Drugs

Generics

Biosimilars ≠ Generics
Biosimilars Are Not Generics

The Objective of a Biosimilar Clinical Program Is to Demonstrate That There Are No Clinically Meaningful Differences Based on the Totality of the Evidence, Not to Reestablish Benefit

Standard Biologic Pathway [351(a)]

- Clinical studies
- Clinical pharmacology PK/PD
- Nonclinical
- Analytical

Biosimilar Pathway [351(k)]

- Clinical studies
- Clinical pharmacology PK/PD
- Nonclinical
- Analytical

McCamish M. Presented at: 2013 EMA Workshop on Biosimilars.
Drifts in ADCC-Related Quality Attributes of *Originator* Trastuzumab: Impact on Development of a Trastuzumab Biosimilar

Clinical Requirements

• At least one clinical pharmacokinetic study for establishing bioequivalence to the reference product

• At least one study of clinical safety, efficacy, and immunogenicity to establish clinical equivalence
 – Typically performed in the most sensitive population
 – Establishes similarity in efficacy
 – Immunogenicity and safety data

• Additional clinical trials as necessary
 – To rule out residual uncertainty
Currently Approved Oncology Biosimilars in the United States.... And More in Development!

<table>
<thead>
<tr>
<th>Product</th>
<th>Approval Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>trastuzumab-anns</td>
<td>June 2019</td>
</tr>
<tr>
<td>trastuzumab-qyyp</td>
<td>March 2019</td>
</tr>
<tr>
<td>trastuzumab-dttb</td>
<td>January 2019</td>
</tr>
<tr>
<td>trastuzumab-pkrb</td>
<td>December 2018</td>
</tr>
<tr>
<td>rituximab-abbs</td>
<td>November 2018</td>
</tr>
<tr>
<td>pegfilgrastim-cbqv</td>
<td>November 2018</td>
</tr>
<tr>
<td>filgrastim-aafi</td>
<td>July 2018</td>
</tr>
<tr>
<td>pegfilgrastim-jmdb</td>
<td>June 2018</td>
</tr>
<tr>
<td>trastuzumab-dkst</td>
<td>December 2017</td>
</tr>
<tr>
<td>bevacizumab-awwb</td>
<td>September 2017</td>
</tr>
<tr>
<td>filgrastim-sndz</td>
<td>March 2015</td>
</tr>
</tbody>
</table>

Integration Into Cancer Care

- Supportive care biosimilars (eg, filgrastim, peg-filgrastim) are acceptable to clinicians and patients
 - Biosimilar filgrastim in active clinical use
- Biosimilar cancer therapeutics (eg, rituximab, trastuzumab) have a higher bar for acceptance
 - Clinical trials with a short-term efficacy endpoint in a highly sensitive population
 - PK and PD endpoints
 - Immunogenicity
 - Safety
 - Post-approval surveillance
Comparative Clinical Studies

- **Purpose:** Exclude any clinically relevant differences between the biosimilar and the reference product and to address any residual uncertainty about biosimilarity
- **Conducted stepwise**
 - Immunogenicity studies followed by comparative clinical efficacy and safety
 - Extrapolation is a critical concept
Selecting a Valid Clinical Endpoint

• Critical and challenging for biosimilars
• Sensitive endpoints are recommended

Patient Criteria
- Overall survival

Disease Criteria
- Objective response rate
- Disease free survival
- Disease free progression
- Pathological complete

Endpoints for biosimilar clinical trials
- Clinically relevant, short-term objective measure able to detect differences
- Continuous endpoints may be preferred over binary endpoints
- Length of the study should be sufficient to allow for adequate safety and immunogenicity assessments

WHO-2. WHO Guidelines on evaluation of monoclonal antibodies as similar biotherapeutic products (SBPs), 2016.
Optimal Clinical Trial Setting?

First-line metastatic trials
- Most treatment naïve
- Long drug exposure for a majority to assess safety and immunogenicity
- Highly sensitive endpoint (ORR) that allows evaluation of secondary endpoints (PFS/OS) in realistic time frame
- ORR correlates with PFS and OS in HER2+ disease

Neoadjuvant trials
- All treatment naïve
- Short-term endpoint of pCR, one year drug exposure
- DFS and OS are long-term endpoints
- Post surgery treatment may impact long-term endpoints
Trastuzumab Biosimilars: The New Frontier

- Over-expression of HER2 implicated in the pathophysiology of ~ 25% of breast and 18% gastric and gastroesophageal tumors
- Trastuzumab has changed the treatment course for HER2+ tumors
 - In *metastatic breast cancer*, improves PFS, OS, and ORR
 - In *early stage breast cancer*, improves DFS and OS
 - As *neoadjuvant therapy*, improves pCR and DFS rates
 - Improves PFS, OS, and ORR in *metastatic gastric cancer*
 - Gold standard as treatment of early and late-stage HER2+ breast cancer
 - Is well tolerated with modest and manageable toxicity
HERITAGE: First-line Trastuzumab vs Biosimilar MYL-1401O in HER2+ Metastatic Breast Cancer

Part 1 Results for Multicenter, Randomized, Double-blind Phase III Equivalence Study

- Primary endpoint (week 24): ORR
- Secondary endpoints (week 48): tumor progression rate, PFS, OS

MYL-1401O 6 mg/kg IV Q3W* + taxane† for minimum of 8 cycles (n = 249)

Trastuzumab 6 mg/kg IV Q3W* + taxane† for minimum of 8 cycles (n = 251)

MYL-1401O 6 mg/kg IV Q3W* + taxane†

Trastuzumab 6 mg/kg IV Q3W* + taxane†

*After usual loading dose.
†Physician choice of docetaxel or paclitaxel
Primary Endpoint:
Ratio of ORR (90% CI) at Week 24 Within the Prespecified Equivalence Margin Supports Similar Efficacy

Best ORR at week 24 in the ITT populationa

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Trastuzumab-dkst N=230</th>
<th>Trastuzumab N=228</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR, n (%)</td>
<td>161 (70.0)</td>
<td>146 (64.0)</td>
</tr>
</tbody>
</table>

| Ratio of ORR (90% CI) | 1.09 (0.981, 1.218) |
| Difference in ORR (90% CI) | 6.00 (-1.26, 13.11) |

Stratified by taxane, tumor progression, tumor endocrine status.

aRatio of best ORR (defined as a complete or partial response per RECIST 1.1) by week 24 based on cumulative assessment done by a single, central, blinded oncologist.

ITT, intention-to-treat; ORR, overall response rate; RECIST, Response Evaluation Criteria In Solid Tumors.

Rugo et al. \textit{JAMA}. 2017;317:37-47 and ASCO 2018
Similar Efficacy Between Trastuzumab-dkst and Trastuzumab Observed Through 48 Weeks

Progression-free survival

<table>
<thead>
<tr>
<th></th>
<th>Trastuzumab-dkst</th>
<th>Trastuzumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (95% CI)</td>
<td>11.1 (8.81-11.20)</td>
<td>11.1 (8.60-11.20)</td>
</tr>
</tbody>
</table>

Log-rank P value

<table>
<thead>
<tr>
<th></th>
<th>Trastuzumab-dkst</th>
<th>Trastuzumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-rank P value</td>
<td>0.842 + censored</td>
<td></td>
</tr>
</tbody>
</table>

Stratified hazard ratio (95% CI)

<table>
<thead>
<tr>
<th></th>
<th>Trastuzumab-dkst</th>
<th>Trastuzumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratified hazard ratio (95% CI)</td>
<td>0.95 (0.714-1.251)</td>
<td>0.61 (0.360-1.039)</td>
</tr>
</tbody>
</table>

P value

<table>
<thead>
<tr>
<th></th>
<th>Trastuzumab-dkst</th>
<th>Trastuzumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>P value</td>
<td>0.694</td>
<td></td>
</tr>
</tbody>
</table>

Overall survival

<table>
<thead>
<tr>
<th></th>
<th>Trastuzumab-dkst</th>
<th>Trastuzumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (95% CI)</td>
<td>NE</td>
<td>NE</td>
</tr>
</tbody>
</table>

Log-rank P value

<table>
<thead>
<tr>
<th></th>
<th>Trastuzumab-dkst</th>
<th>Trastuzumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-rank P value</td>
<td>0.131 + censored</td>
<td></td>
</tr>
</tbody>
</table>

Stratified hazard ratio (95% CI)

<table>
<thead>
<tr>
<th></th>
<th>Trastuzumab-dkst</th>
<th>Trastuzumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratified hazard ratio (95% CI)</td>
<td>0.61 (0.360-1.039)</td>
<td></td>
</tr>
</tbody>
</table>

P value

<table>
<thead>
<tr>
<th></th>
<th>Trastuzumab-dkst</th>
<th>Trastuzumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>P value</td>
<td>0.694</td>
<td></td>
</tr>
</tbody>
</table>

a Stratified by assigned taxane, tumor progression, and tumor endocrine status. *b* Assessments are ongoing and OS will be calculated after 240 deaths or 36 months.
Similar Efficacy Between Trastuzumab-dkst and Trastuzumab Observed Through 48 Weeks

Progression-Free Survival

Overall Survival (immature)

Log-rank $P=0.131$

Log-rank $P=0.842$
PFS at Week 48 Correlates with ORR at Week 24

- At week 24, 1.3% and 0% of patients demonstrated CR, and 68.3% and 64.0% demonstrated PR, with trastuzumab-dkst and trastuzumab, respectively.
- At week 48
 - An additional 2 patients (1 per group) demonstrated CR and an additional 5 patients demonstrated PR in the trastuzumab group
 - The confirmed ORR is 70.0% and 66.7% with trastuzumab-dkst and trastuzumab, respectively

The Multinational Association of Supportive Care in Cancer • Annual Meeting 2019 • www.mascc.org/meeting
CR, complete response; ORR, overall response rate; PFS, progression-free survival; PR, partial response. Rugo et al, ASCO 2018
HERITAGE: Safety Profile at Week 24

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>MYL-1401O + Taxane (n = 247)</th>
<th>Trastuzumab + Taxane (n = 246)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious AE, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 1 serious AE</td>
<td>38.1</td>
<td>36.2</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>27.5</td>
<td>25.2</td>
</tr>
<tr>
<td>Neutropenia with fever</td>
<td>4.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>1.6</td>
<td>4.9</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>1.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Deaths due to serious AEs, n</td>
<td>4*</td>
<td>4†</td>
</tr>
<tr>
<td>Median LFEV values, % (range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>64.0 (51 to 82)</td>
<td>63.0 (51 to 84)</td>
</tr>
<tr>
<td>Wk 24</td>
<td>63.5 (50 to 81)</td>
<td>63.0 (41 to 82)</td>
</tr>
<tr>
<td>Change from BL to Wk 24</td>
<td>-1.0 (-13 to 21)</td>
<td>-1.0 (-19 to 13)</td>
</tr>
</tbody>
</table>

Incidence of AEs Is Low During Monotherapy

<table>
<thead>
<tr>
<th>AEs, patients, %</th>
<th>Combination therapy: weeks 1-24</th>
<th>Monotherapy: weeks 24-48</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trastuzumab-dkst + taxane</td>
<td>Trastuzumab + taxane</td>
</tr>
<tr>
<td></td>
<td>N=247</td>
<td>N=246</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>57.5</td>
<td>53.3</td>
</tr>
<tr>
<td>Asthenia</td>
<td>21.9</td>
<td>16.3</td>
</tr>
<tr>
<td>Nausea</td>
<td>19.8</td>
<td>13.8</td>
</tr>
<tr>
<td>Edema peripheral</td>
<td>14.2</td>
<td>11.4</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>12.1</td>
<td>4.5</td>
</tr>
<tr>
<td>Vomiting</td>
<td>10.5</td>
<td>7.7</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>8.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>6.1</td>
<td>1.6</td>
</tr>
<tr>
<td>Infusion-related reaction</td>
<td>6.9</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Only 513 of 5015 total TEAEs (10%) started during monotherapy treatment.

AE, adverse event; TEAE, treatment-emergent AE.
Immunogenicity was similarly low for both MYL-1401O and trastuzumab arms
- Overall antidrug antibody rates: 2.4% vs 2.8%, respectively
- Median titer in antibody-positive pts: 2.5 vs 2.3, respectively

Trough C_{min} comparable between arms at Wk 15 (cycle 6)
- Ratio of geometric LSMS: 103.88% (90% CI: 93.7% to 115.11%)

Population pharmacokinetics similar between MYL-1401O and trastuzumab arms
- Dose-normalized mean C_{max}: 0.4321 vs 0.4196 µg/mL/mg, respectively
- Dose-normalized mean AUC: 98.350 vs 94.391 µg·d/mL/mg, respectively

HERITAGE: Overall Survival at 36 Months

HERITAGE Study Data in Clinical Perspective

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>HERITAGE STUDY</th>
<th>HISTORICAL DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR 24 Weeks (Primary)</td>
<td>MYL-1401O 70%</td>
<td>1st line HER2+ MBC 55-69%</td>
</tr>
<tr>
<td></td>
<td>Herceptin 64%</td>
<td></td>
</tr>
<tr>
<td>ORR ratio (90% CI): FDA Requirement</td>
<td>1.09 (0.981, 1.218)</td>
<td>N/A</td>
</tr>
<tr>
<td>ORR difference (95% CI): EMA Requirement</td>
<td>6.0% (-2.64%, 14.45%)</td>
<td>N/A</td>
</tr>
<tr>
<td>Time to Progression (TTP) 48 Weeks</td>
<td>11.1 Months</td>
<td>11.3 -12.4 Months</td>
</tr>
<tr>
<td>Overall Survival 48 Weeks</td>
<td>89.1%</td>
<td>75%-89%</td>
</tr>
<tr>
<td>Safety & Toxicity</td>
<td>Comparable</td>
<td>Consistent</td>
</tr>
<tr>
<td>Immunogenicity</td>
<td>3.9% 3.4%-6.1%</td>
<td>3.4%-7.1%</td>
</tr>
<tr>
<td>Exposure</td>
<td>Comparable</td>
<td>Consistent</td>
</tr>
</tbody>
</table>

References:
CT-P6 Compared With Trastuzumab

Study Design – Dose Scheme

Primary endpoint: pCR

CT-P6 8 mg/kg loading dose; 6mg/kg IV every 3 weeks
Herceptin 8 mg/kg loading dose; 6mg/kg IV every 3 weeks
Docetaxel 75 mg/m² IV every 3 weeks
(Fluorouracil (500mg/m²), Epirubicin (75mg/m²), Cyclophosphamide (500mg/m²) IV q3wk

Randomization

Follow-up:
Up to 3 years from the last enrolled date

Surgery

Enrollment

Neoadjuvant phase

Adjuvant phase

Pathological Response Rates

<table>
<thead>
<tr>
<th></th>
<th>Per-Protocol</th>
<th></th>
<th></th>
<th>Risk Ratio Estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT-P6 (N=248)</td>
<td></td>
<td>Reference Trastuzumab (N=256)</td>
<td>Difference of pCR rate (95% CI)</td>
<td></td>
</tr>
<tr>
<td>Total pCR rate</td>
<td>46.77%</td>
<td>50.39%</td>
<td>-3.62%</td>
<td>0.9282</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(40.43, 53.19)</td>
<td>(44.10, 56.68)</td>
<td>(-12.38, 5.16)</td>
<td>(0.7753 – 1.1113)</td>
</tr>
<tr>
<td>Primary endpoint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pCR rate</td>
<td>39.92%</td>
<td>41.41%</td>
<td>-1.49%</td>
<td>0.9641</td>
</tr>
<tr>
<td>excluding DCIS (95% CI)</td>
<td>(33.78, 46.31)</td>
<td>(35.31, 47.71)</td>
<td>(-10.22, 7.31)</td>
<td>(0.7806 – 1.1906)</td>
</tr>
<tr>
<td>Breast pCR rate</td>
<td>51.61%</td>
<td>55.08%</td>
<td>-3.47%</td>
<td>0.9371</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(45.20, 57.98)</td>
<td>(48.76, 61.28)</td>
<td>(-12.18, 5.34)</td>
<td>(0.7957 – 1.1036)</td>
</tr>
</tbody>
</table>

- Total pCR: Pathologic complete response of breast and axillary nodes regardless of DCIS
- Breast pCR: Pathologic complete response of the absence of invasive neoplastic cells in the breast
- Abbreviations: CI, confidence interval; DCIS, ductal carcinoma in situ; pCR, pathological complete response.

The Multinational Association of Supportive Care in Cancer • Annual Meeting 2019 • www.mascc.org/meeting
SB-3: 1 Year Follow-Up Data

- 367 patients with HER2-positive early breast cancer or locally advanced breast cancer
 - Randomized to receive SB-3 trastuzumab biosimilar (186 pts) or originator trastuzumab (181 pts) concurrently with chemotherapy
- After 30.1 months of treatment with SB-3 and 30.2 months of reference product
 - No statistically significant difference in EFS between outcomes in the biosimilar arm (96.7%) and the reference product (98.2%) (hazard ratio [HR], 1.19; 95% CI, 0.23-6.18; \(P = .8376 \))
Summary of Phase III Trials for Trastuzumab Biosimilars

<table>
<thead>
<tr>
<th>SB-3 (Trastuzumab-dttb)</th>
<th>ABP-980 (Trastuzumab-pkrb)</th>
<th>CT-P6 (Trastuzumab-dkst)</th>
<th>MYL-14010 (Trastuzumab-qyyp)</th>
<th>PF-05280014 (Trastuzumab-qyyp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial</td>
<td>NCT02149524</td>
<td>NCT01901146</td>
<td>NCT02162667</td>
<td>NCT02472964</td>
</tr>
<tr>
<td>Disease</td>
<td>EBC</td>
<td>EBC</td>
<td>EBC and Metastatic</td>
<td>Metastatic</td>
</tr>
<tr>
<td>No. of patients</td>
<td>800</td>
<td>725</td>
<td>549</td>
<td>500</td>
</tr>
<tr>
<td>Stage of development</td>
<td>FDA approved (January 2019)</td>
<td>FDA approved (June 2019)</td>
<td>FDA approved (December 2018)</td>
<td>FDA approved (December 2017)</td>
</tr>
</tbody>
</table>

EBC: Early breast cancer
Pharmacovigilance

- Safety – As more biosimilars are marketed and market uptake increases, real-world safety and efficacy data will emerge.
 - Post-marketing pharmacovigilance efforts may likely be utilized to monitor safety and efficacy of biosimilars.
 - European Medicines Agency mandated pharmacovigilance monitoring for all approved biosimilars approved.
 - As a result, the European experience, with over 400 million patient days with biosimilars, suggests that biosimilars would satisfy lingering safety concerns
 - There are NO provisions in the Biologics Price Competition and Innovation Act (BPCIA) for pharmacovigilance plans of biosimilars.
 - FDA interchangeability guidance document refers back to documents for all products
 - Good Pharmacovigilance Practices and Pharmacoepidemiologic Assessment (March 2005)
Unique Issues Relevant to Biosimilars

- Extrapolation
- Interchangeability
- Naming

*The suffix –sndz was named prior to the FDA-designation for biosimilar suffixes

Core name FDA-designated suffix must have:
No recognizable meaning, 4 letters and lowercase
Summary

• The goals of the biosimilar clinical trial program are to demonstrate similar efficacy and safety compared to the reference product and to address residual uncertainty—not to re-establish benefit.

• Experience with biosimilars has resulted in their introduction into multiple treatment guidelines and position statements about their use and clinical value.

• Biosimilars may offer a variety of potential benefits to patients, payers, and health care providers, including:
 – Additional treatment choices at potentially lower cost to the health care system
 – Increased access to biologics, which may lead to improved overall health outcomes
 – Possible savings and efficiencies to the health care system
 – A variety of therapeutic options
Biosimilars: Improving Access to Biologic Therapy Worldwide